Activation of Reg gene, a gene for insulin-producing beta -cell regeneration: poly(ADP-ribose) polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation.

نویسندگان

  • T Akiyama
  • S Takasawa
  • K Nata
  • S Kobayashi
  • M Abe
  • N J Shervani
  • T Ikeda
  • K Nakagawa
  • M Unno
  • S Matsuno
  • H Okamoto
چکیده

The regeneration of pancreatic islet beta cells is important for the prevention and cure of diabetes mellitus. We have demonstrated that the administration of poly(ADP-ribose) synthetase/polymerase (PARP) inhibitors such as nicotinamide to 90% depancreatized rats induces islet regeneration. From the regenerating islet-derived cDNA library, we have isolated Reg (regenerating gene) and demonstrated that Reg protein induces beta-cell replication via the Reg receptor and ameliorates experimental diabetes. However, the mechanism by which Reg gene is activated in beta cells has been elusive. In this study, we found that the combined addition of IL-6 and dexamethasone induced the expression of Reg gene in beta cells and that PARP inhibitors enhanced the expression. Reporter gene assays revealed that the -81 approximately -70 region (TGCCCCTCCCAT) of the Reg gene promoter is a cis-element for the expression of Reg gene. Gel mobility shift assays showed that the active transcriptional DNA/protein complex was formed by the stimulation with IL-6 and dexamethasone. Surprisingly, PARP bound to the cis-element and was involved in the active transcriptional DNA/protein complex. The DNA/protein complex formation was inhibited depending on the autopoly(ADP-ribosyl)ation of PARP in the complex. Thus, PARP inhibitors enhance the DNA/protein complex formation for Reg gene transcription and stabilize the complex by inhibiting the autopoly(ADP-ribosyl)ation of PARP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pancreatic β-Cell Death, Regeneration and Insulin Secretion: Roles of Poly(ADP-Ribose) Polymerase and Cyclic ADP-Ribose

In the early 1980s, we proposed a unifying model for beta-cell damage (The OKAMOTO model), in which poly(ADP-ribose) synthetase/polymerase (PARP) activation plays an essential role in the consumption of NAD+, which leads to energy depletion and necrotic cell death. In 1984, we demonstrated that the administration of PARP inhibitors to 90% depancreatized rats induces islet regeneration. From the...

متن کامل

Recent Advances in the Okamoto Model The CD38-Cyclic ADP-Ribose Signal System and the Regenerating Gene Protein (Reg)-Reg Receptor System in -Cells

Twenty years ago, we first proposed our hypothesis on -cell damage and its prevention (the Okamoto model), according to which poly(ADP-ribose) synthetase/polymerase (PARP) activation is critically involved in the consumption of NAD , leading to energy depletion and cell death by necrosis. Recently, the model was reconfirmed by results using PARP knockout mice and has been recognized as providin...

متن کامل

Poly(ADP-ribosyl)ation Regulates Insulator Function and Intrachromosomal Interactions in Drosophila

Insulators mediate inter- and intrachromosomal contacts to regulate enhancer-promoter interactions and establish chromosome domains. The mechanisms by which insulator activity can be regulated to orchestrate changes in the function and three-dimensional arrangement of the genome remain elusive. Here, we demonstrate that Drosophila insulator proteins are poly(ADP-ribosyl)ated and that mutation o...

متن کامل

PARP1 gene expression is downregulated by knockdown of PARG gene

Poly(ADP-ribosyl)ation is a modification of nuclear proteins that regulates DNA replication, repair and transcription. In order to investigate the biological effects of degradation of poly(ADP-ribose), knockdown of the poly(ADP-ribose) glycohydrolase (PARG) gene was performed by introducing a short interfering RNA (siRNA)-pool into HeLa S3 cells. Notably, poly(ADP-ribosyl)ated proteins did not ...

متن کامل

Protein Poly(ADP-ribosyl)ation Regulates Arabidopsis Immune Gene Expression and Defense Responses

Perception of microbe-associated molecular patterns (MAMPs) elicits transcriptional reprogramming in hosts and activates defense to pathogen attacks. The molecular mechanisms underlying plant pattern-triggered immunity remain elusive. A genetic screen identified Arabidopsis poly(ADP-ribose) glycohydrolase 1 (atparg1) mutant with elevated immune gene expression upon multiple MAMP and pathogen tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 1  شماره 

صفحات  -

تاریخ انتشار 2001